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ABSTRACT

Expressions for the diffusion coefficient of ions in gas mixtures are

obtained from momentum-transfer theory, and are given in terms of the diffu-

sion coefficients and drift velocities of the ions in the pure component

gases. Blanc's law holds exactly at all field strengths if the mean free time

between collisions is independent of velocity (Maxwell model), but otherwise

there may be either positive or negative deviations from Blanc's law at high

fields. Such deviations are of comparable magnitude for the diffusion coef-

ficients and the mobility, but are not identical. Specific cases of inverse-

power potentials are treated in further detail, and some numerical examples

are given for rigid-sphere interactions.
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I. INTRODUCTION

The diffusion coefficients of ions in gases are proportional to their
j

mobilities at low electric field strengths, but at high fields the propor-

tionality breaks down and the diffusion coefficients usually increase more

rapidly than the mobilities. Moreover, the diffusion coefficient becomes

anisotropic at high fields, the rates of diffusion parallel and perpendicular

to the field direction being different. The purpose of this paper is to find

an expression for the composition dependence of ion diffusion coefficients in

gas mixtures at arbitrary field strengths, in terms of the diffusion coef-

ficients in the pure component gases. Although no data at present exist,

measurements in mixtures introduce no new experimental difficulties, and the

present work predicts interesting effects.

Since we seek only a composition dependence, we can use a simple momentum-

transfer method, used previously for finding the composition dependence of the

2ion mobility. As a side result we make explicit a hidden assumption in the

previous work, namely that the dependence of the momentum-transfer cross sec-

tion on the drift velocity itself could be ignored. This has a distinct effect

on the deviations from Blanc's law predicted for high fields.

At low fields, the analogue of Blanc's law for ion mobilities holds to

first order in the Chapman-Enskog approximation,

1/D = [(x./D.) , (1)
j D

where D is the diffusion coefficient of the ion in the mixture, the x.

are mole fractions, and the D. are the diffusion coefficients of the ion in

the pure component gases at a number density the same as the total number den-

sity of the mixture. Higher Chapman-Enskog approximations yield only positive
3

deviations from Blanc's law, but these are usually small. At high fields we
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find that appreciable deviations from this linear rule can occur, and that

the deviations are sensitive to the form of the ion-neutral interaction. "



II. .MOMENTUM-TRANSFER THEORY

The basic idea in a momentum-transfer calculation is that the momentum

given to the ions by external forces must be balanced by the momentum the

ions transfer to the neutral molecules by collisions, since the ions are not

accelerated on the average. For mobility, the external force is obviously

supplied by the electric field. For diffusion, the external force is regarded

as coming from the gradient of partial pressure of the diffusing' species.

Wannier ' has shown that the drift and diffusive motions are separable, in

the sense that the diffusion is simply superposed on the net drift velocity.

Thus the momentum transferred per unit volume in the field direction (along

2 4
the z-axis) for ions in a single gas is '

/ f°° \ 8pf
/ Nv (1 - cos9)2*bdb ) = neE - T-=- , (2)\ r I / 3z\ ; / z

and perpendicular to the field direction is

3p

(1- cos9)2irbdb ) = - -± , (3)

o

\ 3pi) = - -^± ,

where n is the number density of ions, £ is a proportionality constant

of order unity, p is the reduced mass of an ion-neutral pair, v and v
Z X

are the average ion velocity components, N is the number density of neutrals

(it is assumed that N » n), v is the relative speed of an ion-neutral

pair colliding with impact parameter b and deflection angle 9 , e is the

ionic charge, E the electric field strength, and p. the partial pressure

of ions. The pointed brackets indicate averages over relative speeds. The

average ion velocities are related to the drift velocity v, and the diffusive

fluxes J and J by the expression
JC Z

\ - vd + (Jz/n) • ^x = Jx/n •
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and the diffusion coefficients parallel and perpendicular to the field direction

are defined by the equations

Di, 3p D, 3p
j = _ _JLL — j - -*- i.
z kT 3z » x kT 8x *

Comparison of Eqs. (2)-(5) identifies Djj and D| in terms of the average

momentum-transfer cross sections.

)i| and D i

For mixtures, the left-hand sides of Eqs. (2) and (3) become summations

over the species in the mixtures. The results for both Dn and D i then

become

where Q(v .) is the momentum-transfer or diffusion cross section,

r
Q(v .) = 2ir (1 - cos9.)bdb , (7)

rD J 1
o

in which 6. signifies 9(v .). The diffusion coefficients in pure gas j

of density N = £N. are given by one term in these sums,

D.jj.N ( v .Q(v .) \ - kT/5 , (8)
] 3 \ r] r] / .

where now the average \ / . is not the same as the corresponding average

in Eq. (6), because the ion velocity distributions are different in the pure

gas and in the mixture. From here on the notation \ / . means an average

taken in the pure gas j, whereas \ / means an average taken in the mixture.

Combining Eqs. (6) and (8), we obtain

X4 <V^<XVv^>>

• . (9)

D

An analogous treatment of v, yields an expression of similar form
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n x. ( v .Q(v .) )

^ • I ̂  *> r] < • do)Vd Vd

However, this does not necessarily mean that the D's have the same composition

dependence as does v, , because the averages in general depend on v, unless

the field is very weak.

The problem is now reduced to finding the ratio of the averages,

{v .Q . y / /v .Q . \ . In general this will require further approximations,

but two especially simple cases can be distinguished at once. First, if the

field is weak the relative velocities are essentially all thermal, the ion

distribution functions are the same in the pure gases and in the mixtures,

and the ratios of the averages are all unity. Second, if Q. is inversely

proportional to v . (the Maxwell model), the products v .Q . are all con-

stants and the ratios are again unity. Thus Blanc's law holds for both these

special cases.
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III. EVALUATION OF AVERAGES

To evaluate the ratios of averages appearing in Eqs. (9) and (10), we

make three approximations. We first assume that the averages can be decom-

posed,

< „. • ̂  V " • / / f\, \ " • i x \ \ " • i / % \ JL..1 /J. i n ' \ n / nj j j
and second that

/ \ / 2 \ 1/2

\V/ " \rV ' (12)
] / j 3 j

It is easy to show that

(\?}. - ("'). *{"?\ , (13)

f\

where \v / ^s tne mean square ion velocity and \V. ) is the mean

square velocity of neutral species j. The latter is always entirely thermal

and equal to 3kT/M., where M. is the neutral mass, but ( v / contains

both thermal and field components, and the field component is partitioned

between a part visible as drift motion and a random part. Thus the first two

assumptions reduce the problem to the determination of the partitioning of the

2 6ion energy, for which 'an approximate result is already known. ' For ions in

a single gas, Wannier has shown that the energy partitioning is approximately

where m is the ion mass. This result is exact for the Maxwell model, and

is thought to be a reasonable approximation for other ion-neutral interactions.

2
The generalization to mixtures yields

, (15)HM. d m
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where the mean mass of the gas mixture is

M = J u.M./y u. ,L» -i -i 4* -i *

u. = x.M.Q( ( v .) )/(m + M.)'
D 3 D r3 D

(16)

(17)

Equations (15) and (16) can always be considered correct in a formal sense,

so the third approximation is embodied in Eq. (17).

Combining the foregoing approximations, we obtain

,Q(v .) \ v,Q( ( v . \
jy r] / -x, d^ > r^/

. V(<Vrj>.}
] J J 3

3kT
m+M.

1/2
3kT

M.v,.
3 d3

-1/2

(18)

Substitution of this expression back into Eqs. (9) and (10) yields the final

formulas for the composition dependences of DM ,D i , and v,. The previous

r\

result for v, implicitly assumed that the ratios of the Q's in Eq. (18)

were all unity, an assumption valid only for rigid spheres. The velocity

dependences of the Q's must be known before numerical results can be calcu-

lated; although the same Q's appear in both numerator and denominator in

Eq. (18), they are to be evaluated at different mean velocities corresponding

to averages in the pure components and in the mixtures.
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IV. EXAMPLES

Here we present a few illustrations of the foregoing results. If the

ion-neutral interaction potentials V. vary inversely as some power of the

separation r.,
n.

v = p /T>V. C./r.

where C . and n . are constants , then the cross sections vary as v .

2/n_.

rj

.
J

2/n.

(19)

-4/n.
•

(20)

where the A (n.) are pure numbers that have been evaluated by numerical

7 8
integration. ' The averages in Eqs. (9) and (10) can then be readily found.

Thus Eq. (9) becomes

' 1-4/n.
.. X. f V,-v 1

1 - Y _i d

D " 4 D. lv..J
T T » Hi'

m+M
m+M. *

1

3kT
2

>vd-

2
2

n
j 1 + 3kT

« 2
M . v , .

3 d] J

(21)

and a similar expression for v, follows from Eq. (10). The weight factors

i. of Eq. (17) for finding M can now be written as

-2/n..
m+M _,_ 3kT«̂ _̂«« + ••• ^̂ ^̂

m+M. 2
3 Mjvd j

(22)

Since Eq. (22) itself contains M, the actual computation of M may require

iteration.

For a numerical example we consider rigid spheres at high fields, for

which Eq. (21) can be put in the form

Xi^ = y ^ ui m^M
^DTvp- I (Dj/vdj) lvdjj U + M,

(23)

For a binary gas mixture the fractional deviation of D from Blanc's law

can be written in terms of three dimensionless ratios,
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D(Blanc)
D

"1

T>~1( Blanc)
1 =

" ft 9 * 1/2
(v r(m YU

& 9 « 1/2 1/21^1^ A , "v, ,x +x (v ) (m )
, (24)

where

V = Vdl/Vd2

m = (m + M ) /(m + M )

(25)

(26)

(27)

If we choose x.. and D , then deviations from Blanc's law can be shown as
.'. JU

contours in a v - m plane. Such a diagram is shown in Fig. 1, with
*

x = 1/2 = x and D = 1. The latter choice means that the deviations from

the Einstein relation are the same in the two pure components; as a consequence,

the diagram represents the deviations from Blanc's law for v, _as well as D.

Two points on the diagram refer to K in H + N? and to He in He + Ne. The

deviations for the latter case are predicted to be small, in agreement with
Q

experiment. Unfortunately there are no measurements for the case with large

predicted deviations. Both positive and negative deviations are seen to be

possible.
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V. CONCLUSIONS

The present results predict that deviations from Blanc's law for both

mobility and diffusion coefficients can be of either sign at high fields, and

can be of a magnitude that should be detectable experimentally. The deviations

depend explicitly on the nature of the ion-neutral interaction through the

averages \v .Q.\ and ^v .Q. \ , and are zero for the Maxwell model in

which Q. is inversely proportional to v . and the mean free time between

collisions is the same at all velocities. This behavior is reminiscent of

the behavior of thermal diffusion in neutral gases, which has been used as a

sensitive probe of intermolecular forces, and indeed the same sort of averages

occur in the momentum-transfer theory of gaseous thermal diffusion. This

suggests that deviations from Blanc's law at high fields might be a useful

probe of ion-neutral forces. Physically, the present theory ascribes the

deviations from Blanc's law to the difference in the ion energy partitioning

in the gas mixture and in the pure components. Only the particular velocity

dependence of the cross section given by the Maxwell model is just right to

compensate for this effect.
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FIGURE CAPTION

Fig. 1. Percentage deviations from Blanc's law,

100[D~ -D (Blanc)]/D (Blanc), at high fields for an equimolar rigid-sphere

ft ft ft
binary gas mixture, as contours in a v -m plane with D = 1. The dimen-

sionless variables are defined in Eqs. (25)-(27). The same contours hold for

* +
v, as for D when D =1. The open circle refers to K in H + N0, and

the filled circle to He+ in He + Ne.
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